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Generalization of Maeda’s Theorem

Anatolij Dvurecenskij'

Received May 19, 1986

The theorem of S. Maeda concerning the characterization of finite measures on
a quantum logic of all closed subspaces of a Hilbert space of dimension #2 is
generalized to the case of o-finite measures with possible infinite values. The
proof does not involve Gleason’s result, but only the proposition on frame
functions.

1. INTRODUCTION AND PRELIMINARIES

Let £(H) be a quantum logic of all closed subspaces of a (not
necessarily separable) Hilbert space H over the field C of real or complex
numbers. A measure on F(H) is a function m: £(H)~ [0, cc] such that
(1) m(0)=0; (2) m is o-additive on all sequences of mutually orthogonal
elements of #(H). Gleason’s theorem (Gleason 1957) says that any finite
measure m on a separable Hilbert space H, dim H #2, is in one-to-one
correspondence with positive Hermitian operators T on H of finite trace via

m(M)=1(TM), MeZ(H) (1)

(we identify a subspace M with its orthoprojector P™ on it). Eilers and
Horst (1975) and Drisch (1979) prove that the assumption of separability
is superfluous when the Hilbert space is of dimension of nonmeasurable
cardinality (for definition see below); consequently, any finite measure is
already totally additive. Maeda (1980) (see also Kalmbach, 1983, p. 273)
has given the characterization of all finite measures on a quantum logic
YF(H), dim H # 2, showing that the following conditions are equivalent:
(1) m is representable through a positive Hermitian operator T of finite
trace via (1); (2) m has a support, i.e., there is an element M € £(H) such
that m(N)=0iff N1 M, (3) m is totally additive on orthogonal elements
of ¥(H). In proving that (3) implies (1), Maeda follows the proof in
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Gleason’s paper, but he does not use the Gleason result. It is relatively
easily verified that (1) implies (2), and (2) implies (3).

The situation with measures attaining infinite values is more compli-
cated. These measures may appear in some descriptions of physical systems;
for example, the dimension function is such a measure.

To formulate our results, we need the following notions. By Tr(H) we
denote the class of all bounded operators T in H such that, for every
orthonormal basis {x,: a € I'} of H, the series },_, (Tx,, x,) converges and
is independent of the basis used; the expression tr T:=3% _, (Tx,, x,) is
called the trace of T.

A bilinear form is a function ¢: D(t) X D(t)-> C [ D(t) not necessarily
dense or closed in H], called the domain of the definition of ¢, such that ¢
is linear in both arguments, and t(ax, By) = aBt(x, y), x, ye D(1), a, B C.
If t(x, y) = t(y, x) for all x, y € D(#), then ¢ is said to be symmetric; if for
a symmetric bilinear form t we have t(x, x)=0 for all xe D(¢), then ¢ is
said to be positive. Let P #£(H) and let P < D(t). Then by t° P we mean
a symmetric bilinear form defined by t o P(x, y) = t(Px, Py), x,ye H If to P
is induced by a trace operator T, that is, to P(x, y) =(Tx, y), x, y € H, then
we say to PeTr(H) and we puttrto P=tr T

By @,.; M, we mean the joint of mutually orthogonal elements M, €
F(H), ae L If 0# x e H, then by P, we denote the one-dimensional sub-
space of H spanned over x.

Let n be a cardinal. We say that a measure m is n-finite if there is a
set I whose cardinal is #n and a set of mutually orthogonal elements
{M,: ae It £(H) such that &,_, M, = H with m(M,)<oo, ae L If, in
particular, n =¥, (i.e., the cardinal of the set of all integers), we say that
m is o-finite. For example, m(M):=dim M, M € ¥(H), is o-finite iff H is
separable.

Lugovaja and Sherstnev (1980) proved that for any o-finite measure m
on ¥(H), m(H)=oco, of a separable Hilbert space H there exists a unique
positive symmetric bilinear form t defined on a dense domain such that

trte P iff te PeTr(H)
P)= 2
m(P) { otherwise (2)

It is known that not any symmetric bilinear form determines via (2) a
o-finite measure. The necessary and sufficient condition for this is given by
Lugovaja (1983).

2. MAEDA’S THEOREM

The crucial notion for our main goal is a frame function. Denote
S(H)={xe H: | x| =1}. A function f: S(H) - [0, ] is a frame function if
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(1) f(Ax) =f(x) for all scalars A with |A|=1; (2) there is a constant W (may
be +o0), called the weight of f, such that, for any orthonormal basis
{x,:ae A}of H, Y ,_, f(x,) = W. Aframe function f has a finiteness property
if ¥, f(x;)<o0, for some orthogonal system of vectors {x;:iel}< H,
implies f|S(G) is a frame function with a finite weight, where G=,_, P..
Tt is clear that any frame function with a finite weight has the finiteness
property. A frame function f is regular if there is a positive symmetric
bilinear form t with D(f)={xe H: x#0; f(x/|x]|) <0} U {0} such that
f(x)=1t(x, x) for any xe S(H) D(t). Let n be a cardinal. We say that a
frame function f is n-finite if there exists an orthonormal basis, {x,: a € A}
suchthat A=_,.; A, where A;~ A; = ¢ whenever i#j,i,j€ I, ZjeAif(xj) <
co for any i € I, and the cardinal of I is n. In particular, if n=N,, then we
say that f is o-finite.

Lemma 1. Let f be a frame function with the finiteness property and
with the infinite weight on S(H) of a three-dimensional Hilbert space. If
f(x)+f(y)<ooand f(z) <oo, where x Ly, then z= ax+ By for some scalars
a, BeC.

Proof. 1f we put m(0) =0, m(P) =Y, m(P, ), where {x;} is an orthonor-
mal basis in P, then m is a measure on ¥£(H) and the result follows from
a lemma in Lugovaja and Shersinev {1980). W

Corollary 2. Let 3=dim H = n <o and let f be a frame function on S(H)
with the finiteness property and with infinite weight. If f(x;)+---+
f(x,_) < and f(z)<<oo, where x;Lx;, if i#j, then z=a;x;+- - -+ a,x,
for some scalars «a,,..., a,c C.

Progf. Follows from Corollary 4.3 in Dvurecenskij (1985). M

The cornerstone of the Gleason theorem is the assertion that any frame
function with a finite weight on a three-dimensional real Hilbert space is
regular. The proof is very nontrivial and many attempts at an elementary
proof have been made (e.g., Gudder, 1982; Maljugin, 1982; Cooke et al,
1985).

The following two results characterize frame functions with possible
infinite values.

Theorem 3. Let 4=dim H <o and let f be a frame function on S(H)
with the finiteness property and with infinite weight. If there are three
orthonormal vectors x, v, z such that f(x)+f(y) + f(z) <co, then f is regular.

Proof. Using Corollary 2, we see that if we put M ={xe H: x#0,
S(x/lx]) <oo}u {0}, then Me ¥(H) and dim M =3. Using the known
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assertion on finite frame functions on finite-dimensional Hilbert space, we
see that f|S(M) is a regular frame function. M

Theorem 4. Let H be a real or complex Hilbert space of dimension
#2 and let n be any cardinal. Then any n-finite frame function f with the
finiteness property is regular.

Proof. If the weight of f is finite, then the assertion follows from the
classical result of Gleason (1957).
Now let the weight of f be infinite. Define a map F on H via

x=0

0
F(x)—{f(x/ﬂxll)llxllz for x#0

Put D(F)={xec H: F(x)<c}. We claim to show that D(F) is a dense
submanifold in H. Let x, y € D(F). Due to the n-finiteness of f, we have
that there exist three orthonormal vectors x;, x,, x; and three scalars a,
a,, oy such that f(x,)+ f(x,) +f(x3) <0, z:= X, + 0%, + a3X3 L Xy, X5, X3,
and Px #0# Py, where P=@13-:1 P,. Due to Lemma 1, f|S(M), where
M = P,v P, v P,,is afinite frame function; hence, F(x+ y) <co. The density
of D(F) follows from the n-finiteness of f.

Now we define a positive symmetric bilinear form ¢ Since any two-
dimensional subspace Q such that f|S(Q) is a finite frame function, due
to the n-finiteness and Theorem 3, may be embedded into some three-
dimensional subspace N such that f|S(N) is a finite frame function, f|S(Q)
is regular. Hence, there is a positive Hermitian operator T, € Tr(H) such
that F(x, y)=(Tox, y) for all x, y€ Q.

Now let x, ye D(F). Define t(x, y) = (Tox, y), where Q is some two-
dimensional subspace of H containing x, y. It is easily verified that ¢ is the
well-defined symmetric positive bilinear form in question. Indeed, if x,

y€Q,, Q, then
(Tox, x)=F(x)=(Tox,x) A

Our main goal is the following generalization of Maeda’s theorem to
measures with possible infinite values.

Theorem 5 (S. Maeda). Let £(H) be a quantum logic of a real or
complex Hilbert space H of dimension #2. Let n be a cardinal and let m
be an n-finite measure. The following statements are equivalent:

1. There exists a unique positive bilinear form ¢ with a dense domain
D(t) such that equation (2) holds.

2. m has a support.

3. m is totally additive.
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Proof. Statement 1=2. Statement 1 implies that D(1)=
{xe H: m(P,) <o} u{0}. Define Dy={xe H: m(P,)=0}u{0}. We claim
that D, is a closed submanifold in H. First, let x, y € D,. Since Dy< D(t),
x+ye D(t). Check

tx+y,x+y)=t(x, x)+t(x, y)+t(y, x)+t(y,y)

It is known that for any positive symmetric bilinear form ¢ we have |¢(x, y)[* <
t(x, x) - t(y, y) for any x, y € D(t). Hence, x+y e D,.

Now we show that if x,,...,x,€ D,, then m(M,)=0, where M, =
Vi, P_. Without loss of generality we may assume x, ..., X, are linearly
independent vectors. Applying the Gram-Schmidt orthogonalization pro-
cess to x;,...,x,, choose orthonormal vectors y,=aix,+ - +alx;, i=
1,...,n Then

trio M, = '21 t(M,y:, M,.y;) :z:l=1 t(yi, y1)=0
Due to statement 1, m(M,,)=0.

To show that D, is a closed submanifold, consider a fundamental
sequence {x,}n-1< Dy. Let ||x—x,||>0 when n->co. Put M, =P, v---v
P, ; then xe M = \/:o:1 M, and the continuity of m from below implies
m(M)=lim, m(M,) =0, so that x D,.

Now let {x;: ie I} be any orthonormal basis in D, and {y;: je J} be
any orthonormal basis in Dy. Check

ZI t(Dox;, Dox;) + _ZJ t(Dyy;, Doy;) =0

ie je
Consequently, to Dye Tr(H), and m(D,)=0. If we put M = Dg, then M
is a unique support of m.

Statement 2=>3. Let now {P,: a € A} be an arbitrary system of mutually
orthogonal elements of £(H) with the join P. If m(@,_; P.) = for some
countable subset J of A, then m(P)=c0=3 __, m(P,). Hence, suppose that
m(&,.; P.) <o for any countable subset J of A. Denote, for any n=1,
A,={ae A: m(P,)=1/n}. Our assumption yields that any A, is a finite
subset of A. Put Ay= U(;O:l A,. Then, for any ae A— A,, m(P,)=0; con-
sequently, P, L M, where M is a support of m. Therefore, (B, ,_,, PalM
and m(B,. 54, Pa) =0. Since

m(P)=m( & P)+ )X m(P,)
acA—Ag ac Ay
we have m(P)=},_, m(P,).

Statement 3=>1. Define on S(H) a function f via f(x)=m(Px), x€
S(H). Then f is an n-finite frame function with the finiteness property.
Theorem 4 implies that there is a unique positive symmetric bilinear form
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t with a dense domain D(t)={x¢c H: m(P,) <oo}u {0} such that f(x)=
t(x, x)=m(P,). Now we show that equation (2) holds. Let m(P)<<co, If
{x;} and {y;} are orthonormal bases in P and P, respectively, then the total
additivity of m gives

m(P)=Y m(P,) =Y i(x;, )= t(Px, Px)+X t(Py, Py,)

which entails 1o P< Tr(H).
Conversely, if to Pe Tr(H), then

trto P=Z t(x;, x;) =Z_ m(P,)=m(P)

and the theorem is completely proved. W

Remark. An immediate consequence of Theorem 5 is the Gleason
theorem for o-finite measures on a separable Hilbert-space quantum logic
formulated by Lugovaja and Sherstnev (1980) [see (2)], since for a separable
Hilbert space o-additivity and total additivity coincide. Moreover, Theorem
5 says that in this case any o-finite measure has a support.

Another application of Theorem 5 is Theorem 6 as follows. First we
give the following definition. We say, according to Ulam (1930), that the
cardinal I is nonmeasurable if there is no trivial positive finite measure v
on the power set a set A, whose cardinal is I, such that »({a}} =0 for any
a€ A. In the opposite case I is called measurable cardinal. It is evident
that any finite cardinal and N, is nonmeasurable. It is known that if J<1
and I is nonmeasurable, then so is J. If the continuum hypothesis holds
(i.e., Ny=c¢), then ¢ (cardinal of reals) is nonmeasurable cardinal. Under
the assumption of the generalized continuum hypothesis, the nonmeasura-
bility of I implies the nonmeasurability of 2”.

We say that the dimension of a Hilbert space H is a nonmeasurable
cardinal if the cardinal of an orthonormal basis of H is nonmeasurable.

Let m be a cardinal. We say that a map m: ¥(H )~ [0, o] with m(0) =0
is m-additive if m(D,_, P,) =Y ,.r m(P,) whenever the cardinal of T is m.

Theorem 6. Let n and m be two cardinals such that n<=m, Ny<m.
Then, for any n-finite m-additive measure m on a quantum logic £(H) of
a Hilbert space H whose dimension is nonmeasurable cardinal #2, each
of the statements 1-3 of Theorem 5 holds.

Moreover, if M is a support of m, then dim M = max{N,, n}.

Proof. We shall show that under our assumptions m has a support.
This is true when m is a finite measure. Indeed, the results of Eilers and
Horst (1975) and Drisch (1979) show that there is a unique positive Her-
mitian operator T € Tr(H) such that m(M) =tr(TM), M € ¥(H). Hence,
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according to Schatten (1970), T=Y,_, A.f,®f,, where A is a countable
index set, fx f:x—(x, f)f, for any xe H, A,>0 for any ac A. An easy
calculation shows that M =5, _, Py, is a support of m of dimension =N,.

Now let m(H) = 0. The n-finiteness of m implies that there is a system
of subspaces {H;: ie I} such that P, ., H;=H, m(H;)<co, for any i€ ],
where the index set I has the cardinal n. Without loss of generality we may
assume that dim H;=3. The first part of the present proof entails that, for
any i€ l, H;=M;® N,, where M; is a support of a finite measure m;=
m|%(H,), i€ I, with dim M, < X,.

Let us put Ho=@P,.; M;, No=@P,., N;; then dim H,,=n. Now we
show that an n-finite n-additive measure my = m|¥(H,,) has a support of
dimension =n. In fact, denote Dy={x e H,: m.(P,)=0}u {0}. Theorem 4
entails the existence of a symmetric positive bilinear form ¢ with a dense
domain in H such that m(P,) = t(x, x) whenever m( P, ) <co. Therefore, as
in the proof of the implication 1=>2 from Theorem 5, x, y € D, implies
x+ye Dqy. Moreover, if x,, .. ., x, are linearly independent vectors belong-
ing to D,, then m(M,)=0, where M,=\/_, P,. Indeed, choosing
orthonormal vectors y,, ..., y, of form y;=alx,+---+aix;, i=1,...,n,
then

m(Mn) ZZ?:1 m(Py;) 22:;1 t(yi, yi) =0

Now it is clear that D, is a closed submanifold in H,, and the n-additivity
of m,, gives my(Dy)=0. Consequently, M = H, A Dy is a support of m.,
and dim M =max{®,, n}.

Now we show that M is also a support of a measure m on ¥(H). Put
N={xe H: m(P,)=0}u{0}. Then as above Ne ¥(H). It is evident that
N, H for any ie I, and Dye N. Then M= Dy® N,< N. We claim N =
M™*.If not, then x € N A M. Simultaneously, m(P,) = 0and m(P,) > 0, which
gives a contradiction.

Finally, to prove the assertion of the theorem, it is necessary to apply
Theorem 5. W

Proposition 7. Let m be an n-finite measure on a quantum logic £(H)
of a Hilbert space of dimension #2. If M is a support of m, then dim M <
max{N,, n}.

Proof. Theorem 5 implies that m is totally additive. Repeating the proof
of Theorem 6, we obtain the assertion of the proposition. W
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